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We introduce a lattice model for a classical doped two dimensional antiferromagnet which has
no quenched disorder, yet displays slow dynamics similar to those observed in supercooled liquids.
We calculate two-time spatial and spin correlations via Monte Carlo simulations and find that for
sufficiently low temperatures, there is anomalous diffusion and stretched-exponential relaxation of
spin correlations. The relaxation times associated with spin correlations and diffusion both diverge
at low temperatures in a sub-Arrhenius fashion if the fit is done over a large temperature-window
or an Arrhenius fashion if only low temperatures are considered. We find evidence of spatially
heterogeneous dynamics, in which vacancies created by changes in occupation facilitate spin flips
on neighbouring sites. We find violations of the Stokes-Einstein relation and Debye-Stokes-Einstein
relation and show that the probability distributions of local spatial correlations indicate fast and
slow populations of sites, and local spin correlations indicate a wide distribution of relaxation times,
similar to observations in other glassy systems with and without quenched disorder.

PACS numbers: 05.20.-y, 75.10.Hk, 75.10.Nr

I. INTRODUCTION

Doped two-dimensional antiferromagnets have at-
tracted considerable attention in the past two decades,
due to their relevance as a model to describe high tem-
perature superconductivity in the cuprates.1,2 In addition
to superconductivity, there have been many other phases
observed in the cuprates, and there has been particular
recent interest in the spin glass observed at low temper-
atures and intermediate doping,3,4,5,6 and the checker-
board ordered electronic state in the high-Tc cuprate
Bi2Sr2CaCu2O8+δ (Bi2212) and in hole-doped copper
oxides.7,8 Whilst quantum effects are very important in
the cuprates, it is also of interest to study whether glassy
phases and slow dynamics are present in simple classical

doped two dimensional antiferromagnets, and this is the
subject we address here.

In this paper we construct the simplest such model
that we can find that displays glassy dynamics - it has
nearest neighbour interactions only and the spins are on
a square lattice, so there is no geometric frustration. The
only source of frustration is that there are mobile holes,
and these mean that local relaxation to Néel order leads
to local frustration.

Whilst the model we construct is principally that of
an antiferromagnet, it falls within the general class of
models which show slow dynamics without quenched dis-
order. There has been intense activity in the past few
years investigating models with this behaviour, espe-
cially kinetically constrained models, which have triv-
ial Hamiltonians but more complicated rules governing
their dynamics.9,10,11,12,13,14,15,16,17,18 These models have
been investigated with the aim of shedding light on the
local structure of slow dynamics in glasses, dynamical
heterogeneities.19,20,21 The approach here is complemen-

tary to the work on kinetically constrained models, as
we study a model which has a more complicated Hamil-
tonian, but relatively simple dynamics. The model we
study has some similarities to frustrated lattice gases22,23

and the hard square lattice gas.24

We find that this model displays slow dynamics at low
temperatures, both in the diffusion of particles and in
the relaxation of spins. For the values of the param-
eters used (temperature, doping and ratio between the
antiferromagnetic and nearest-neighbour repulsion) and
the linear sizes analyzed the system reaches a station-
ary state after a transient. This state is characterized by
antiferromagnetic or checkerboard order. In the station-
ary state we find unusual temperature dependence of the
relaxation times for both diffusion and spin relaxation,
that can be fit by a sub-Arrhenius temperature depen-
dence over the entire temperature range that we study
(although there is Arrhenius temperature dependence at
low temperatures). We also find evidence of spatially
heterogeneous dynamics that lead to a breakdown of the
relation between diffusive and rotational motion dictated
by the Debye-Stokes-Einstein law (where we consider the
spin degree of freedom to model rotations). The distri-
butions of local correlations measured at different time
differences are stationary, and hence trivially scale with
the value of the global correlation.25 The form of these
distributions is interesting in that they suggest that for
spatial correlations there are two populations of sites, one
with fast, and the other with slow dynamics, and a wide
range of spin relaxation times.

The paper is structured as follows. In Sec. II we in-
troduce the model that we study and the one-time and
two-time quantities that we calculate with Monte Carlo
simulations. In Sec. III we display our results for the
phase diagram and the correlation functions that we de-
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fined in Sec. II. We show evidence of time-scales that
diverge at low temperatures, and find that both the dif-
fusive motion and spin flip dynamics are spatially het-
erogeneous. We also investigate the distributions of local
two-time quantities. In Sec. IV, we discuss how our re-
sults indicate a breakdown in the Debye-Stokes-Einstein
relation. Finally, in Sec. V we summarize and discuss our
results.

II. MODEL

The Hamiltonian for the model is

H =
∑

ij

ninj (V + JSiSj) , (1)

where ni = 0, 1 is a density variable indicating occupa-
tion of a site, and Si = ±1 is an Ising spin attached to
each particle (i.e. when a particle moves site, so does
its spin). There is a nearest neighbour repulsion with
magnitude V , and a nearest neighbour antiferromagnetic
interaction with magnitude J . The particles have a hard-
core constraint so that there is no double occupancy of
sites. We are interested in the limit where J/V < 1 (in
the limit where J/V > 1, we find phase segregation of an-
tiferromagnetic domains and regions with no particles).
We study this model in the canonical ensemble by fix-
ing the number of particles on a two dimensional square
lattice and define the hole concentration x = 1 − N/L2,
where N is the number of particles and L is the lattice
size. This is essentially the classical, Ising limit of the
t − J − V model studied by Kivelson and Emery and
co-workers.26,27

We note that the model has some similarities to others
that have been introduced in the literature, in particular
the frustrated lattice gas,22,23 although in that case, the
spin interactions Jij are randomly drawn from a distribu-
tion, rather than being of constant sign and magnitude.
In the limit that J → ∞, this model has some resem-
blance to the hard square lattice gas24 (although the spin
degree of freedom means that the dynamics here have a
different flavour to that model).

When there is no doping, the ground state is an antifer-
romagnet with Néel order. This implies that the system
can be divided into two sublattices, each with ferromag-
netic order, shifted by one lattice spacing in the x and y
directions with respect to each other. In this limit, the
model can be made equivalent to a ferromagnet by apply-
ing a spin-flip transformation on one sublattice. However,
once there is doping and holes are free to move around,
the transformation is no longer applicable and the anti-
ferromagnet and ferromagnet are distinct.

We simulate this model using classical Monte Carlo
simulations and Metropolis dynamics. The model has
no intrinsic dynamics, hence we impose the following dy-
namics. At each step we choose with 50 % probabil-
ity either to attempt to move a particle to one of its

neighbouring sites or to flip its spin.28 We only allow at-
tempts to move a particle to an unoccupied site (with
equal probabilities for the unoccupied sites).29 The at-
tempt is then accepted with Boltzmann probability. In
each of the particle move and spin flip steps, detailed bal-
ance is respected. The Monte Carlo time-unit is equal to
the attempt of N updates (motion of particles or spin
flips).

1. Motion of holes

Whilst naively it might be thought that an individual
hole would be localized due to leaving a string of over-
turned spins behind it, holes are able to move diagonally
in an antiferromagnetic background at no energy cost by
hopping around one and a half loops of a plaquette.30

The energy of the final state is the same as that of the
initial state, however this is an activated process with
activation energy 12 J ,30 as the hole flips spins into an
unfavourable energy configuration on its first lap of the
plaquette then lowers the energy to that of the original
state as it goes round for another half a lap. Similarly, a
pair of holes that are on opposite corners of a plaquette
can move along the diagonal that they lie on, although
the activation for this process can involve V as well as J .
At low doping, where holes interact very rarely, this im-
plies that there are a lot of states with the same energy,
yet with large barriers between them, which naturally
leads to slow dynamics.

A. Quantites Calculated

We calculate quantities that should demonstrate spin
and hole ordering and illustrate the dynamics of the spins
and holes. The one-time quantities that indicate order-
ing are the staggered magnetization that indicates Néel
order of the spins and a checkerboard order parameter
that indicates ordering of the holes. As has been dis-
cussed extensively in the literature (see e.g. Refs. 31,32),
glassy dynamics are often seen more easily in two-time
quantities if one-time quantities reach a limit. In most
of the cases we consider the one-time quantities saturate
for high temperatures, but can saturate quite slowly as
the temperature is decreased. We calculate the two-time
correlations for spins and mean square displacement for
both high and low temperatures.

1. One time quantities

We calculate two one-time quantities. These are the
staggered magnetization

Ms =

∣

∣

∣

∣

∣

1

N

∑

x,y

(−)x+ySx,y

∣

∣

∣

∣

∣

, (2)
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and a checkerboard order parameter

Mc =

∣

∣

∣

∣

∣

1

N

∑

x,y

(−)x+ynx,y

∣

∣

∣

∣

∣

, (3)

where x and y are the co-ordinates of a given lattice site
and Sx,y and nx,y are the spin and occupation of the site
i = (x, y) respectively. We calculate these quantities as a
function of temperature to determine the phase diagram,
which is shown in Fig. 5.

2. Two time quantities

We calculate several two-time correlation functions, for
both spatial and spin correlations. These are: the mean
square displacement

D(t, tw) =
1

N

∑

α

∣

∣

〈

(rα(t) − rα(tw))2
〉
∣

∣ , (4)

where rα is the position of the αth particle; a spin auto-
correlation function

C(t, tw) =
1

N

∑

α

〈sα(t)sα(tw)〉 , (5)

where sα is the spin of the αth particle; and a constant-
site spin correlation function

Clocal(t, tw) =
1

N

∑

i

〈Si(t)Si(tw)〉 , (6)

where Si is the spin at site i, and we note that Si may
not be the same spin at times t and tw (although at low
enough temperatures they coincide unless t and tw are
very widely spaced).

B. Parameters

In all our runs we used random initial conditions. Most
of the data presented are for L = 30 though we also used
larger systems L = 40, and 50, to determine the phase
diagram. We set J/V = 0.2 unless otherwise specified.
In our calculations we mainly use a waiting time of tw =
3200 Monte Carlo steps (MCs) (we found that we had
essentially identical results for a shorter waiting time of
tw = 320 MCs, and a longer waiting time of tw = 32000
MCs). We accumulated data for up to 108 MCs after the
waiting time.

III. RESULTS

A. One-time quantities

We first display results for one-time quantities which
demonstrate that these saturate relatively quickly at high

temperatures, but the saturation can be quite slow as the
temperature is lowered at low values of x. The staggered
magnetization at five different temperatures is shown as
a function of time in Fig. 1 for x = 0.1 and J/V = 0.2,
averaged over 50 samples of size L = 30. For this choice
of parameters, the configurations have local Néel order-
ing at relatively short times, as shown in Fig. 2 for one
sample at low temperature with one large domain. How-
ever, there can be domain walls that move slowly, and
lead to a relatively slow saturation of the staggered mag-
netization. The two-time correlations do not appear to
be particularly sensitive to the presence of antiferromag-
netic domain walls.
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FIG. 1: Staggered magnetization as a function of time aver-
aged over 50 samples with L = 30 for x = 0.1, J/V = 0.2 and
temperatures T/J = 1.2, 1.0, 0.8, 0.6, and 0.4.

At larger values of x, there is checkerboard order in
addition to Néel order, and in Fig. 3 we show the time-
evolution of the checkerboard order parameter Mc and
staggered magnetization Ms averaged over many sam-
ples for L = 30 with x = 0.35 at four different temper-
atures. Figure 4 shows the configuration reached by a
low temperature sample at the same doping level after
25600 MCs. The results in the two figures appear to
be consistent with the coexistence of antiferromagnetic
and checkerboard order at low temperatures (the non-
zero value of Ms at T & 0.8 in Fig. 3 b) is a finite size
effect), and Fig. 4 appears consistent with the possibil-
ity of phase separation. We note that the time-scale for
the onset of checkerboard order grows as temperature is
decreased so that for T = 0.4, the checkerboard order
has not saturated in the time-window considered, even
though at higher temperatures in Fig. 3 a) the value of
the order parameter saturates at around Mc ≃ 0.47.

We show the phase diagram in Fig. 5 and indicate the
regions in which there is Néel ordering and checkerboard
ordering. The boundary of the region of Néel order, the
Néel temperature, TN , is found by calculating Ms at
L = 30, 40, and 50 and extrapolating to where Ms van-
ishes. We also find that for x = 0, TN = 2.29 ± 0.05 J ,
in agreement with the exact value of TN = 2.27J for the
two-dimensional Ising antiferromagnet. We use the same
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FIG. 2: Illustration of the state of the system after 400 MCs in
a sample with L = 30 for x = 0.1, J/V = 0.2, and T/J = 0.1.
Up spins are indicated by black squares and down spins are
indicated by open squares.

procedure with Mc to calculate the checkerboard order-
ing temperature Tcb. The third temperature shown on
the phase diagram is Tne, which is the temperature below
which we see stretched exponential spin relaxations, and
is discussed further in Sec. III B. From Fig. 5 it is clear
that Néel order disappears as x is increased towards 0.5,
and checkerboard order grows for x & 0.2. For immobile
holes, one expects the antiferromagnetism to disappear
at the percolation threshold. The percolation threshold
for bond dilution in two dimensions is xc = 0.5,33 and for
site dilution it is xc = 0.41.34,35 For any one snapshot of
the spin-hole configurations, there is no percolating clus-
ter for x > 0.41 in the thermodynamic limit, and hence
we would expect that xc = 0.41. Whilst we have not
investigated this question in great detail, our results are
consistent with antiferromagnetism vanishing at the site
dilution threshold. The slow dynamics typically occur at
temperatures lower than the Néel temperature, although
we note that Tne > TN for x = 0.4, in the region where
Tcb > Tne > TN .

Changing the ratio of J/V whilst keeping it less than
1 appears to have little effect on the Néel order, but the
checkerboard transition temperature decreases rapidly as
J/V increases. For instance, if J/V = 0.5 then we find
that Tcb/J is reduced to 1.3 at x = 0.5, compared to
Tcb/J = 3.8 for J/V = 0.2, as shown in Fig. 5. This
appears to indicate that Tcb ∼ V at low J/V , whilst
TN ∼ J ; we have not explored the dependence of Tne on
J and V .
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FIG. 3: a) Checkerboard order parameter and b) staggered
magnetization as a function of time in Monte Carlo steps
averaged at least 100 samples with L = 30 for x = 0.35,
T/J = 0.4, 0.6, 0.8, and 1.0, and J/V = 0.2.

B. Two-time quantities

We show the spatial and spin correlation functions as a
function of t−tw at several different temperatures below.
All data shown here for two-time correlations was taken
in L = 30 systems – the data shown is only for one ther-
mal history, although it was checked that changing ther-
mal history does not quantitatively change the results or
fits. We note that there is some waiting time dependence
of the results at low temperatures, although this is gen-
erally only for very short waiting times (tw < 320 MCs).
Hence for the data we show here, we actually find that
the two-time quantities depend only on time differences
for the waiting times we use, so D(t, tw) ≃ D(t− tw) and
C(t, tw) ≃ C(t − tw).

Our analysis of the data follows the following scheme.
We attempt to fit

D(t, tw) = ((t − tw)/τr)
α, (7)

and

C(t, tw) = Ae−((t−tw)/τs)β

, (8)

where τr is the relaxation time for diffusion and τs is the
relaxation time for spin correlations. Apart from very
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FIG. 4: A configuration with checkerboard hole-ordering, and
Néel ordering for x = 0.35, L = 30, J/V = 0.2, and T/J = 0.1
after 25600 MCs.
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FIG. 5: Phase diagram, showing Néel temperature TN ,
checkerboard ordering temperature Tcb, and onset temper-
ature of non-exponential spin relaxation, Tne as a function of
x and T/J , for J/V = 0.2. The antiferromagnetic (AF) and
checkerboard (CB) regions are marked, as is the region of
apparent coexistence of antiferromagnetic and checkerboard
order (AF + CB).

short times and very long times (where the system size
becomes important for D, and spin correlations die out
for C), these forms work very well (note that A → 1 at
low temperatures and low doping). We use the fits to the
two-time spin correlation to fit Tne, the highest temper-
ature at which one observes non-exponential relaxation,
i.e. β < 1. This temperature scale is not associated
with a change in any order parameter that we measure,
but allows us to determine the boundary of the region
in the phase diagram where slow dynamics are observed.
However, we do note that the equilibration of one-time

quantities at T < Tne is generally much slower than for
T > Tne.

In the figures below, we only show data from x = 0.1
unless indicated, but it is representative of the behaviour
seen at other levels of doping, where we observe similar
qualitative behaviour, with only quantitative differences.
In Fig. 6 we show the mean square displacement as a
function of time for x = 0.1 for J/V = 0.2. Note that at
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2 = 2.5

D(t,tw) ~ (t - tw)

D(t,tw) ~ (t - tw)0.9

T/J = 1.8
T/J = 1.2
T/J = 0.8
T/J = 0.4

FIG. 6: Spatial correlations for x = 0.1, L = 30, and
J/V = 0.2 for temperatures T/J = 0.4, 0.8, 1.2 and 1.8.
Note that at the lowest temperature the slope of the curve
changes, indicating anomalous diffusion. We also indicate
l2x = 1/4x = 2.5 and the fits to D(t, tw) at T = 0.4 for
D(t, tw) < l2x and D(t, tw) > l2x. Note also that the satu-
ration at long times and high temperatures is a finite size
effect.

the lowest temperature in Fig. 6 there is a signature of
anomalous diffusion (i.e. α < 1). This is present for mean
square displacements that are less than l2x = 1/4x, which
is the square of the lengthscale equal to half the average
distance between holes. We show a more striking exam-
ple of anomalous diffusion in Fig. 7 for x = 0.02, where
the lengthscale l2x is much larger than in Fig. 6. In general
we only see anomalous diffusion at temperatures T < Tne

and D(t, tw) < l2x, however the temperature where we
first observe anomalous diffusion does not appear to be
related to Tne, which is when the spin auto-correlations
show non-exponential relaxation. We note that anoma-
lous diffusion has been observed in several experimental
glassy systems,36,37 and can be understood as “caged”
motion on short lengthscales and timescales, with usual
diffusion taking over at longer timescales and lengthscales
when particles have escaped from their cages. Here, the
lengthscale for caging is set by the mean distance between
vacancies, lx.

In Fig. 8 we show the spin correlations for x = 0.1
and J/V = 0.2 for several different temperatures. For
T/J ≤ 1.0 we show both exponential and stretched ex-
ponential fits to C(t, tw). The stretched exponentials are
clearly better fits at low temperatures. We also per-
formed calculations of Clocal(t, tw) for the same param-
eters as in Fig. 8, and these correlations are shown in
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FIG. 7: Spatial correlations for x = 0.02, L = 30, and
J/V = 0.2 for temperatures T/J = 0.4. Anomalous diffu-
sion is clearly evident. We also indicate l2x = 1/4x = 12.5 and
a fit to D(t, tw) of the form ((t − tw)/τ )0.8.
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FIG. 8: Spin auto-correlations for x = 0.1, L = 30, and
J/V = 0.2, with T/J = 1.2, 1.0, 0.8, 0.6, and 0.4. For T/J ≤

1.0 we display both exponential and stretched exponential
fits to the correlations – in each of these cases, the stretched
exponential is the better fit.

Fig. 9. We found Tne to be the same as that found from
C(t, tw) and that the curves are in fact identical at low
temperatures. This is not so surprising, when we con-
sider the relatively slow diffusion of the particles at low
temperatures. In Fig. 10 we show the stretched exponen-
tial β parameter as a function of temperature for the spin
auto-correlations shown in Fig. 8, which clearly indicates
that the spin correlations do not decay exponentially in
time at low temperatures. We also performed simula-
tions for x = 0, in which we found no decay of the spin
correlations, indicating that the timescales observed here
arise solely due to doping.

We extract values of τr and τs from fitting D(t, tw)
and C(t, tw) as described above, and use these to define
relaxation time-scales that we then fit as a function of
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FIG. 9: Spin same-site correlations for x = 0.1, L = 30, and
J/V = 0.2, with T/J = 1.2, 1.0, 0.8, 0.6, and 0.4. For T/J ≤

1.0 we display both exponential and stretched exponential
fits to the correlations – in each of these cases, the stretched
exponential is the better fit. The fits are identical to those
shown in Fig. 8.
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FIG. 10: Stretched exponential β parameter as a function of
temperature for x = 0.1, L = 30, and J/V = 0.2.

temperature:

τr,s = τr,s
0 + γr,s exp

(

E
r,s
0

T

)ar,s

, (9)

where γr,s, τr,s
0 , Er,s

0 and ar,s are fitting parameters. We
also tried fitting our data to a Vogel-Fulcher form, but
this did not lead to good fits. We show fits of the form in
Eq. (9) for τr and τs determined for x = 0.1, J/V = 0.2
in Figs. 11 and 12. In Table I we show values of E0 and
a that we have extracted for τr and τs in fits of the form
of Eq. (9) for different x. Those relating to τr are Er

0 and
ar and those relating to τs are Es

0 and as.
The slowing down with temperature is similar to that

seen in glass formers. However, there is a difference –
in glass formers, the exponent a is equal to 1 for strong
glass formers (Arrhenius) and 2 for fragile glass formers
(super-Arrhenius)38 whereas the relaxation times found
here consistently have a < 1, i.e. sub-Arrhenius be-
haviour if one tries to fit over the entire temperature
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x Er

0 ar Es

0 as

0.02 10.3 0.58 10.9 0.62

0.1 8.6 0.63 8.4 0.68

0.2 7.5 0.68 7.7 0.71

0.3 6.9 0.76 7.1 0.77

0.4 6.4 0.77 6.7 0.82

TABLE I: E0 and a data from fits to τr and τs made using
Eq. (9)

range in which there is a 6 order of magnitude change
in the relaxation time. We did find however, that if we
restricted the temperature range, then there is Arrhe-
nius temperature dependence of the relaxation times at
low temperatures, as is also indicated in Figs. 11 and 12.
This suggests this model has strong-glass like behaviour
at low temperatures.

The diffusion relaxation time, τr, and spin relaxation
time τs, display purely Arrhenius behaviour at low tem-
peratures (T < Tne), and it is possible to get a good fit
to both τr and τs with an Arrhenius form at high tem-
peratures T > Tne, but neither fit is good over the entire
temperature range, as is visible in Figs. 11 and 12.
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τ ~ e8.6(J/T)0.63

Exponential fit, high T
Exponential fit, low T

sub-Arrhenius fit, all T

FIG. 11: Fit to diffusion relaxation times determined from
spatial correlation functions as a function of temperature at
x = 0.1 and J/V = 0.2.

C. Spin configurations

In Figs. 13 and 14 we show how changes in the con-
figurations of spins and occupancy occur in the region
where slow dynamics dominate. The doping levels used
are x = 0.1 (Fig. 13) and x = 0.3 (Fig. 14), and both fig-
ures are for low temperatures (T/J = 0.1). It is obvious
from these plots that the dynamics is quite spatially het-
erogeneous at this temperature. Spin flips occur in the
vicinity of holes and are facilitated by changes in occu-
pation on adjacent sites. There are also regions in which
there are no changes in spin or occupation during the

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

 0.5  1  1.5  2  2.5  3  3.5

τ r

J/T

τ ~ e4.3J/T

τ ~ e6.2J/T

τ ~ e8.4(J/T)0.68

Exponential fit, high T
Exponential fit, low T

sub-Arrhenius fit, all T

FIG. 12: Fits to spin relaxation times determined from spin
correlation functions as a function of temperature at x = 0.1,
L = 30 and J/V = 0.2.

time-window employed. This implies that the dynamics
are a combination of vacancy motion and spin flips rather
than being associated with domain wall motion. Note
that the figures show where there has been a net change
in occupation or a net spin flip, rather than whether this
is the only change that has occurred between t and tw.

Change in occupancy
Spin Flip

 0  5  10  15  20  25  30
 0

 5

 10

 15

 20

 25

 30

FIG. 13: Illustration of the sites at which there has been a
change in occupancy or a spin flip between times 400 MCs
and 25600 MCs for x = 0.1, T/J = 0.1, J/V = 0.2, and
L = 30.

D. Distributions of correlations

In this section we show distributions of local spin cor-
relations and displacements.39 To obtain these distribu-
tions, we coarse-grain the correlations that give D(t, tw)
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a)
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b)
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FIG. 14: The two figures illustrate the sites at which there
has been a change in occupancy or a spin flip between times
400 MCs and 3200 MCs for a) and between 400 MCs and
25600 MCs for b). The parameters are x = 0.3, T/J = 0.1,
J/V = 0.2, and L = 30.

and C(t, tw) when averaged over all sites, over a small
region about each site. More precisely, we define the
coarse-grained local square displacement Dcg

i (t, tw) and
coarse-grained local spin correlation Ccg

i (t, tw) as

Dcg
i (t, tw) =

1

A

∑

α∈Ai(t)

(rα(t) − rα(tw))
2
, (10)

Ccg
i (t, tw) =

1

A

∑

α∈Ai(t)

sα(t)sα(tw), (11)

where A is the area of the box Ai(t), which is the box
centered on site i, containing the set of particles {α} at
time t. In all of the histograms shown below, we choose
A = 32 = 9. In Fig. 15 we show the distribution of coarse-
grained local square displacements for various values of
t − tw. We find that for t and tw with the same global
mean square displacement, i.e. D(t, tw), the distributions
collapse on each other. In Fig. 16, we plot similar dis-
tributions for coarse-grained local spin auto-correlations
and also see a clear scaling when the global correlation
is the same. We note that for time separations such that
D(t, tw) is the same, C(t, tw) also coincides. This scaling
of distributions of local quantities with the value of the
global correlation at a given time has been seen previ-
ously in investigations of other models with slow dynam-
ics and no quenched disorder.25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  10  20  30  40  50  60  70  80

P
(D

cg
i(t

,t w
))

Dcg
i(t,tw)

Dav = 1.15
Dav = 2.56

Dav = 4.37

t - tw = 8000
t - tw = 6000

t - tw = 32000
t - tw = 28000
t - tw = 64000
t - tw = 56000

FIG. 15: Distribution of coarse-grained local square displace-
ments for various values of t − tw, with x = 0.1, T/J = 0.1,
J/V = 0.2, averaged over 20 samples of size L = 50. We
show three pairs of data, which are offset from each other
along the x-axis, and we show the average value of the global
mean square displacement Dav for each pair.

The distributions shown in Figs. 15 and 16 appear to
be stationary (i.e. depend only on t − tw rather than
t and tw separately). Since the distribution is station-
ary, it implies that its first moment is also stationary,
and hence the distribution itself scales with the global
correlation as follows from the arguments below. If the
correlation and mean squared displacement are station-
ary and monotonic, then they can be written as (using
the mean-squared displacement as an example)

D(t, tw) = d(t − tw), (12)
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FIG. 16: Distribution of coarse-grained local spin auto-
correlations for various values of t − tw with x = 0.1, T/J =
0.1, J/V = 0.2, averaged over 20 samples of size L = 50. We
show the average value of the global spin correlation, Cav for
each pair of samples.

and for a given value of D one finds the associated t− tw:

D−1[D] = t − tw. (13)

We can use similar arguments for C(t, tw).
However, whilst the scaling of the distribution with the

global correlation is trivial, the form of the distribution is
not, and indicates spatially heterogeneous dynamics. In
the distribution of local displacements, it is clear that as
t− tw grows there are two populations of sites, one with
fast dynamics, and another with slow dynamics. We note
that the distributions displaying two populations of sites
have D(t, tw) ≥ l2x, implying that one population con-
sists of particles still trapped in cages of size ∼ lx and
the other is those that have escaped these cages. This is
reminiscent of behaviour seen recently in a two dimen-
sional model with quenched disorder40 and in a numerical
simulation of colloidal gellation.41 The local spin correla-
tions do not have a clear separation into two populations
of spins, but there is clearly a wide distribution of lo-
cal relaxation times associated with the large spread in
correlations.

IV. STOKES-EINSTEIN RELATION

The model studied here has several features that are
reminiscent of a glass-forming liquid. At high temper-
atures, the mean-square displacements are linear in t,
showing diffusive behaviour, and the relaxation times as-
sociated with this diffusion grow very quickly with de-
creasing temperature. In addition to diffusion, the spin
degree of freedom in the model may also be regarded as
analogous to a rotational degree of freedom. It is thus in-
teresting to consider the relationships between diffusion
and spin correlations in this model.

The Stokes-Einstein (SE) and Debye-Stokes-Einstein
(DSE) relations describe the translation and rotational
motion of a large spherical particle of radius R in a hy-
drodynamic continuum in equilibrium at temperature T
with viscosity η. The SE relation predicts the depen-
dence of the translational diffusion coefficient, D, on T ,
R and η:

D =
kBT

6πRη
. (14)

D is defined from the long-time limit of the mean-square
displacement, 〈(~x(t) − 〈~x(t′)〉)2〉 = 2dD(t − t′), d is the
space dimension, and kB is Boltzmann constant. Sim-
ilarly, the DSE relation predicts the dependence of the
rotational correlation time, trot on T , R and η:

trot =
4πηR3

3kBT
, (15)

with trot extracted from the decay of, say, 1
n 〈~s(t) · ~s(t′)〉,

where n is the dimension of the orientation degree of free-
dom ~s. Equations (14) and (15) imply that the product
Dtrot should not depend on T and η. Even though these
relations are derived for a spherical tracer, in normal liq-
uids they are often satisfied for the translational and ro-
tational motion of generic probes and the constituents
themselves within a factor of 2.

In a supercooled fragile liquid the situation changes.
While the rotational motion is consistent with Eq. (15),
the diffusion of small probe molecules,42,43 as well as the
self diffusion,44,45 is much faster than would be expected
from the viscosity dictated by Eq. (14). The T depen-
dence of D is not given by T/η but there is a “transla-
tional enhancement” meaning that, on average, probes
translate further and further per rotational correlation
time as Tg is approached from above. For example, rota-
tional motion in OTP is in agreement with Eq. (15) over
12 decades in viscosity while the deviation in the trans-
lational diffusion of small probe molecules of a variety of
shapes, and the OTP molecules themselves, is such that
the product Dtrot increases by up to four orders of mag-
nitude close to Tg. These results imply that molecules
translate without rotating much more than DSE-SE re-
lations would require.

The mismatch between the translational and rota-
tional motion has been observed numerically23,46,47 and
it can be described assuming the existence of dynamic low
viscosity regions,42,48,49 a free-energy landscape based
model,50 within the random first order transition sce-
nario,51 and kinetically facilitated spin models.52,53

Our results in Sec. III B, where we demonstrate anoma-
lous diffusion in Figs. 6 and 7 indicate that the SE rela-
tion breaks down at low temperatures in this model. To
test whether an analogy to the DSE holds in this model,
in Fig. 17 we plot the temperature dependence of the
product of the translational diffusion coefficient and the
characteristic time for relaxation of the spin correlation
for five different values of x. We find that that there
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is strong x dependence of the ratio τs/τr ∼ Dtrot at low
temperatures: for small x, where there is no checkerboard
ordering, τs/τr grows at low temperatures, whereas the
opposite is true for x & 0.2, where checkerboard ordering
is present.

 0
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τ r
/τ

s

J/T

x = 0.02
x = 0.1
x = 0.2
x = 0.3
x = 0.4

FIG. 17: Ratio of diffusion and spin relaxation times as a
function of temperature at x = 0.02, 0.1, 0.2, 0.3, and 0.4,
with J/V = 0.2.

The violation of the DSE relation that we see is much
smaller in magnitude than is generally seen in experi-
ments, but this is likely to be because the model we in-
vestigate displays strong glassy behaviour, whereas ex-
periments that study the breakdown of the SE and DSE
relations are usually for fragile glass formers. The exis-
tence of an extra parameter, the doping x, also allows
for a richer set of behaviour of Dtrot as a function of
temperature than is present in supercooled liquids.

V. DISCUSSION

We have studied a classical model for a doped antifer-
romagnet and found signatures of slow and heterogeneous
dynamics. At low temperatures there is anomalous diffu-
sion at lengthscales less than lx = 1/2

√
x and stretched

exponential spin relaxations. We characterize the tem-
perature below which the slow spin relaxations occur as
Tne. For the doping levels we considered Tne is less than
the higher of the Néel temperature TN and the temper-
ature Tcb, below which checkerboard order is observed.
The timescales associated with both diffusion and spin
relaxation diverge at low temperatures in an Arrhenius
fashion, at all doping levels considered, behaviour remi-
niscent of a strong glass former. Interestingly, we found
that we were able to fit the temperature dependence over
the entire temperature range with a sub-Arrhenius form
for both τr and τs. When we investigated the changes
in spin configurations between two different times at sev-
eral different doping levels, we found that at low temper-
atures, the dynamics were spatially heterogeneous, with
regions of high and low mobility – we also found that
spin flips were most likely to occur adjacent to regions

of high mobility. This spatially heterogeneous dynamics
also manifests itself in the distributions of local diffusion
and spin relaxation. The distributions of local square
displacements indicate that there are fast and slow pop-
ulations of particles, corresponding respectively, to those
which have escaped, and those which are trapped in cages
with size of order lx. The distributions of local spin cor-
relations also indicate that there are fast and slow sites,
through the wide range of relaxation times implied by the
distribution. Finally, we found that when we compare τs

and τr there are violations of the Debye-Stokes-Einstein
relation that vary as a function of doping.

On a first glance at Eq. (1) it might appear strange
that there are slow dynamics associated with this model.
There is no quenched disorder, and there is no explicit
frustration in the interactions as one might expect to see
in a glassy model. The frustration that leads to slow
dynamics appears to be hidden in the interplay of anti-
ferromagnetic interactions and the restrictions on parti-
cle motion imposed by the level of doping. The clearest
example of this is the large energy barrier to the mo-
tion of a hole to the opposite side of a plaquette. One
way to relate this model to others that have been stud-
ied previously is to think about integrating out the holes,
which generates a spin model with plaquette interactions,
which is a generalized version of the gonihedral models
that have been studied and found to have suggestions of
metastable states and glassy dynamics.54

Whilst we believe that the study of the model in this
paper is of interest in itself, we also note that there is
a famous class of doped two dimensional antiferromag-
nets, namely the high Tc superconducting cuprates to
which this work may have some connections. There
are some very clear differences between our model and
generic models for these materials, specifically that it is
classical rather than quantum (and hence cannot show
superconductivity), and also has Ising spins rather than
Heisenberg spins, leading to an enhancement of long-
range order in two dimensions. However, the existence
of glassy spin and diffusive dynamics, in the absence of
quenched disorder, along with checkerboard order, even
in a classical model is very interesting. It also suggests
that it might be interesting to compare quantities anal-
ogous to the SE and DSE relations for spin and charge
relaxations in cuprates. We intend to investigate this
model with quantum dynamics in future work. This will
hopefully complement understanding gained in studying
spin dynamics in doped two dimensional quantum anti-
ferromagnets with quenched disorder.55,56

The model displays many of the features that one
would expect in a lattice model for a structural glass (if
one imagines the spin as corresponding to an orientation
for a rod-like molecule). The temperature dependence
of the relaxation times at low temperatures is consistent
with that of a strong glass-former, although it is inter-
esting that the temperature dependence over the entire
temperature range can be fit with a sub-Arrhenius de-
pendence. It maybe that dimensionality plays some role
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in the behaviour that we observe – it would be inter-
esting to study this model in three dimensions to see
whether similar behaviour is evident there. We note that
recent experiments on two dimensional glassy films do
show relaxation times that appear to have sub-Arrhenius
behaviour if one fits over a temperature range that strad-
dles Tg.

57

Another direction of research that we believe may
be fruitful is, having established the existence of slow
dynamics in this model to construct a field theoretic
description, and to compare whether the symmetries
found in the case of quenched disorder in the Edwards-
Anderson model39 are present, and what differences exist
between the two cases.
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